
1 Non-renewable resources and climate change:

Are we back to zero growth?

We have seen that the Solow model overcomes the Malthusian logic of poverty

traps. Different from the Malthus model, the Solow model suggests that there

are no limits to growth: even in its steady state, output per worker grows at a

constant exponential rate. We have seen that the data of developed economies

over the last century is consistent with this prediction. Nevertheless, over the last

decades, many economists have come back to the question whether permanent

growth in output per worker is indeed possible. The basic idea always comes back

to the basic Malthusian insight: permanent growth is difficult to sustain when

some factor of production is finite. In the late 1960s, economists were principally

concerned with the finiteness of non-renewable resources used in production, such

as oil. We will see that these concerns were likely misguided. Even when a resource

that is essential in the production process is finite, constant economic growth is

still the likely outcome. Moreover, looking at price data suggests what we think

are essential non-renewable resources are either non-essential or are practically in

infinite supply. Since the 2000s, the concern of economists has shifter towards

the environment as a finite resource. First, we begin by considering pollution

that arises as a by-product of the production process. Here, we will see that

technological progress against promises hope in allowing for constant growth in

output per worker without ever increasing pollution levels. Indeed, the data is

consistent with such a model as we see pollution per unit of output declining in

the data over time. Finally, we consider the case of green-house gas emissions and

discuss why these may pose a novel challenge to constant economic growth in the

future.

1.1 Non-renewable resources

Starting in the late 1960s, economists started to worry that there may be a limit

to economic growth given that some factors of production are non-renewable. One

particular famous example was Meadows et al. (1972), who, in their contribution

for the Club of Rome, conducted computer simulations for world output and pop-
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ulation. They wrote

“Given present resources consumption rates and the projected increase in the rates,

the great majority of the currently important nonrenewable resources will be ex-

tremely costly 100 years from now. [...] The prices of those resources with the

shortest static reserve indices have already begun to increase. The price of mer-

cury, for example, has gone up 500 percent in the last 20 years; the price of lead

has increased 300 percent in the last 30 years.”

The argument, certainly, has a lot of intuitive appeal to it. If mercury is

essential in the production process of a modern economy, once we have used-up

all mercury that exists on earth, we can no longer produce goods and services.

In a sense, an economy with a non-renewable resource is even worse for economic

growth than the Malthus economy where land was fixed but not used-up over time.

Given the prediction of economic growth slowing down, Ehrlich (1968) revived the

Malthusian logic of a population growing faster than food supply writing:

“The battle to feed all of humanity is over. In the 1970s and 1980s hundreds of

millions of people will starve to death [...]. At this late date nothing can prevent a

substantial increase in the world death rate.”

Figure 1: Life expectancy over time
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It is needless to day that these dooms-day predictions did not come to pass.

Figure 1 displays the life expectancy in the world over time. Neither during the

1970s no the 1980s did we observe mass starvation around the world. To explain

the continuing process of constant economic growth, this chapter develops a model

based on the Solow model but with a non-renewable resource that is essential in

2



the production process that, nevertheless, features constant economic growth in

its steady state.

1.1.1 Model set up

Assume production is given by

Y (t) = A(t)1−αK(t)αE(t)γL(t)1−α−γ, (1)

where E(t) is the amount of the non-renewable resource used in production. Note,

the function has constant returns to scale in K(t), E(t), L(t). As in the Solow

model, there are different (but economically equivalent) ways to have A(t) in the

production function. Here, it enters with the same exponent, 1 − α, as in the

basic Solow model which will make the comparison across the models simpler.

The factors of production that we also have in the Solow model have the same

dynamics over time as before:

L̇(t)

L(t)
= n, (2)

Ȧ(t)

A(t)
= g, (3)

K̇(t) = sY (t)− δK(t). (4)

Next, we need to think about the dynamics of the non-renewable resource,

E(t). Assume we start in period 0 with a stock of the non-renewable resource

R(0). For example, this could be the barrels of oil that are in the earth. Our use

of the resource depletes this stock over time:

Ṙ(t) = −E(t). (5)

One can show that when competitive firms own the resource, optimal behavior

implies that each period a constant fraction of the remaining stock is used:

sE =
E(t)

R(t)
, (6)
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where sE is the extraction rate. For example, if sE = 0.01 and we start with 100

barrels of oil, than in the first period we will use E(1) = 1, and in the second

period, we will use E(2) = 0.01∗99 = 0.99 and so on. Combining equations (5)

and (6) shows that the stock will decline over time at rate sE:

Ṙ(t)

R(t)
= −sE =

Ė(t)

E(t)
, (7)

where the second equality follows from taking logs and derivatives with respect to

time of (6). A stock declining at a constant rate sE implies an exponential growth

process for the stock:

R(t) = R(0) exp(−sEt). (8)

Hence, we know also that consumption of the resource is declining exponentially

over time:

E(t) = sER(0) exp(−sEt). (9)

1.1.2 The steady state of the economy

To analyze the steady state, we follow teh same steps as in the Solow model. That

is, we first find an expression for the capital-to-output ratio using the production

function:

z(t) =
K(t)

Y (t)
=

K(t)1−α

A(t)1−αE(t)γL(t)1−α−γ
(10)

Next, find its growth rate:

ż(t)

z(t)
= (1− α)

K̇(t)

K(t)
− (1− α)g + γsE − (1− α− γ)n (11)
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and assume a steady state where the capital-to-output ratio is constant:

0 =

(
K̇(t)

K(t)

)∗

− g +
γ

(1− α)
sE − (1− α− γ)

(1− α)
n (12)(

K̇(t)

K(t)

)∗

= g +
(1− α− γ)

(1− α)
n− γ

(1− α)
sE (13)(

K̇(t)

K(t)

)∗

= n+ g − γ

(1− α)
(n+ sE) (14)

which is our first steady state condition. For the capital-to-output ratio to be

constant, the capital stock has to grow at rate n + g − γ
(1−α)

(n + sE). Note, this

growth rate is lower than in the standard Solow model, n + g. The reason is

that, in the presence of a non-renewable resource, population growth and resource

extraction slow down output growth over time. The reason for the latter is straight-

forward: A higher extraction rate implies that the resource use declines faster over

time, see (9), leading to a slowdown in output growth. The negative effect of

population growth is more subtle. As in Malthus, a growing population decreases

labor productivity given that at least one factor of production cannot adjust.

We obtain our second steady state condition from the capital accumulation

equation:

K̇(t) = sA(t)1−αK(t)αE(t)γL(t)1−α−γ − δK(t) (15)

K̇(t)

K(t)
=

s

z(t)
− δ, (16)

which is the same as in the Solow model. Putting things together,

n+ g − γ

(1− α)
(n+ sE) =

s

z∗
− δ (17)

z∗ =
s

n+ g + δ − γ
(1−α)

(n+ sE)
, (18)

which is indeed constant, i.e., depends only on model parameters. Note, for the

same s, n, g, δ, the steady state capital-to-output ratio is higher than in the Solow

model. The reason is, discussed above, in the presence of a non-renewable resource,
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population growth and resource extraction will slow down output growth over time.

Once we have the steady state capital-to-output ratio, we can obtain output

in steady state by rewriting output as a function of the capital-to-output ratio:

Y (t) = A(t)1−αK(t)αE(t)γL(t)1−α−γ (19)

Y (t)1−α = A(t)1−α

(
K(t)

Y (t)

)α

E(t)γL(t)1−α−γ (20)

Y (t) = A(t)

(
K(t)

Y (t)

) α
1−α

E(t)
γ

1−αL(t)1−
γ

1−α (21)

Y (t) = A(t)

(
K(t)

Y (t)

) α
1−α

(sER(0) exp(−sEt))
γ

1−α L(t)1−
γ

1−α (22)

Finally, dividing both sides by the number of workers yields output per worker in

steady state:

y(t)∗ =

(
s

n+ g + δ − γ
(1−α)

(n+ sE)

) α
1−α

(sER(0) exp(−sEt))
γ

1−α L(t)−
γ

1−αA(t)

(23)

Note, the depletion rate sE enters three times into the expression. A higher deple-

tion rate (i) increases the capital-to-output ratio, (ii) raises the resource use and,

thereby, production, and (iii) reduces the stock of resources over time and, thereby

the resource use.

1.1.3 Growth in steady state

The key question is whether the economy can deliver constant long-run economic

growth despite the non-renewable resource. Taking logs and the derivative with

respect to time of (22) yields

lnY (t)∗ = lnA(t) +
α

1− α
ln

(
K(t)

Y (t)

)∗

+
γ

1− α
(ln(sER(0))− sEt) +

(
1− γ

1− α

)
lnL(t)(

Ẏ (t)

Y (t)

)∗

= g + n− γ

1− α
(sE + n).

6



As in the Solow model, output grows with n+g. However, as discussed above, the

non-renewable resource creates a drag on output growth over time, − γ
1−α

(sE +n).

Turning to the growth rate of output per worker, we have Instead of total output,

we can also look at output per capita:(
ẏ(t)

y(t)

)∗

= g − γ

1− α
(sE + n).

Note, the depletion rate has the same negative effect on the growth rate of output

per worker as the population growth rate. Both reduce the efficiency of labor over

time. We have positive growth in GDP per worker iff

g >
γ

1− α
(sE + n).

That is, with a positive growth of technology, we can still have constant growth of

output per worker in steady state. The reason is simple: Though the amount of

the non-renewable resource used in production is declining, the other two factors

of production are still growing at rates

Ȧ(t)

A(t)
= g, (24)(

K̇(t)

K(t)

)∗

= n+ g − γ

(1− α)
(n+ sE). (25)

This growth is able to overcome the negative growth in E(t) leading to constant

growth in output per worker. Using the example of mercury, we have less an less

mercury over time to put into light bulbs but we also develop new designs of light

bulbs that use less and less mercury per light bulb allowing us to increase the total

production of light bulbs over time. This simple example is one way to think about

the fact that we observe continuing constant output per worker growth over time,

though, as the next section shows, probably not the best way. A better way to

think about it is that over time, we simply stop using mercury for light bulbs and

switch to LED lights, i.e., mercury is simply not an essential factor of production

after all.
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1.1.4 Price growth in steady state

One way to test the present model is to look at the behavior of the price of the non-

renewable resource over time. To derive this price behavior, note that, given our

Cobb-Douglas production function, the share of income going to non-renewables

should be constant over time:

PE(t)E(t) = γY (t)

PE(t) = γ
Y (t)

E(t)
.

Now take logs and the derivative with respect to time to obtain the growth rate

of the non-renewable price:

ṖE(t)

PE(t)
=

Ẏ (t)

Y (t)
− Ė(t)

E(t)

ṖE(t)

PE(t)
= g − γ

1− α
sE +

(
1− γ

1− α

)
n+ sE

ṖE(t)

PE(t)
= g +

(
1− γ

1− α

)
(n+ sE)

ṖE(t)

PE(t)
= g +

1− α− γ

1− α
(n+ sE) > 0

The price of non-renewables rises over time for three reasons. First, technological

progress raises the marginal product of non-renewables over time. Second, pop-

ulation growth raises the marginal product of non-renewables over time. Third,

the falling stock of non-renewables raises its marginal product over time. Because

our model is a real model, instead of studying the growth in the price of non-

renewables over time, it is easier to study it relative to another price. Here, we

use the price of labor. Given constant factor shares, we have:

PE(t)E(t)

w(t)L(t)
=

γY (t)

(1− γ − α)Y (t)

PE(t)

w(t)
=

γ

(1− γ − α)

L(t)

E(t)
=

γ

(1− γ − α)

L(0) exp(nt)

sER(0) exp(−sEt)
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Next, take logs and the derivative with respect to time to get the growth rate in

the price wage ratio, RP (t) = PE(t)
w(t)

:

ṘP (t)

RP (t)
= n+ sE.

With n > 0, resources become more scarce over time relative to labor implying

that their relative price is growing. Figure 2 displays the ratio in the data. The

left panel displays the price of oil relative to wages in the U.S. over time. The

right panel uses a broader measure of a commodity basket. The figure shows that,

instead of rising prices for non-renewables relative to wages, we have, if any, falling

prices.

Figure 2: Relative price of non-renewables

Source: St. Louis Fed

This contradiction raises the question what model assumption is incorrect.

The model makes two key assumptions. First, the resource is depleting over time.

In a theoretical sense, this must be true: the amount of barrels of oil in the

earth is, indeed, finite. However, economically speaking, the theoretical amount

of the resource is of little importance. What matters is how much we can extract

given current conditions. As extraction technology improves, think of technological

improvements that made shale gas extraction economically profitable, the amount

of available resources may increase over time instead of decrease. Figure 3, taken

from Blackman and Baumol (2008), provides some numbers supporting this idea.

Despite using all the listed resources over the last decades, today’s reserves of those

resources are larger than they were in the 1950s.
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Figure 3: Resource availability

Source: Blackman and Baumol (2008)

The second key assumption that the model made is that the resource is essen-

tial in the production process. Again, the assumption ignores how technological

progress, together with market forces, can change things over time, in this case

the production process. Simon (1980) was an early critique of theories relying on

essential, non-renewable resources. He provides a good example from history: In

the 16th century, most ships were build out of wood leading to deforestation of

large parts in Europe. As a result, the price of wood rose leading to incentives

to innovate by using other materials. Over time, ships were build out of iron and

later steel. What is more, we invented ways to recycle these resources. The above

discussion about using LED lamps to avoid the use of mercury is another example

in this vein.

1.2 A green Solow Model

Over the last decades, economists started to worry about permanent economic

growth in light of the environmental damage that is often associated with produc-

tion. If one thinks about the environment as a non-renewable resource, pollution

depletes it over time. Different from other resources, it is most natural to think of

the environment as a consumption good, i.e., it does not directly enter the produc-

tion process. Importantly, we can pay resources to avoid pollution. For example,

we may use production technologies that require less pollution but are more ex-

pensive, such as more efficient internal combustion engines in a car. Moreover,

we can switch to different energy sources that produce less pollution but are more
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expensive, such as moving from coal to wind energy production. Finally, we may

switch away from goods that create a lot of pollution, such as air travel, to a good

that pollutes less, such as bus travel. This chapter follows the paper from Brock

and Taylor (2010) who present data on pollution and then a model that allows us

to rationalize the data. The key takeaway will be that, because of technological

progress, constant long-run economic growth in the will still be feasible without

ever rising pollution levels.

1.2.1 Data about pollution

Brock and Taylor (2010) highlight three facts about pollution over time that we

will go through. First, pollution increases initially with per capita income but

starts falling at some point. As this behavior resembles the one of cross-sectional

inequality within a country first described by Kuznets, this behavior is coined an

environmental Kuznets curve. The left panel of figure 4 displays the behavior for

the U.S. For a rich country like the U.S., despite substantial output per worker

growth over time, many pollutant emissions are falling since 1984. The point

when a pollutant reaches its maximum may differ across pollutants. While CO2

continued to rise until the late 90s, VOCs (Volatile Organic Compounds) started

falling at the beginning of the 70s. The right panel looks at one particular emission,

CO2 emissions, for three countries at different levels of economic development.

In the U.S., since the late 1990s, total emissions relative to the population are

declining. Note, pollution per capita are highest in the U.S. suggesting a positive

relationship between output and pollution. Different from the U.S., in countries

with less development like South Korea and China, emissions are still growing

until today though they are close to flat in South Korea since 2010 suggesting that

South Korea might have reached already its peak.

The fact that pollution levels are declining in rich countries despite economic

growth may be surprising. However, it simply reflects the fact that societies care

about the environment and are willing to pay resources to avoid pollution, some-

thing called abatement. A good example comes from the U.S. during the 1950s

and 1960s. In the state of Ohio, one of the most industrial states, a major trans-

portation river, the Cuhayoga, was so polluted with chemicals that the river was

11



Figure 4: Environmental Kuznets curve
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Source: Brock and Taylor (2010) and World Bank

burning on several occasions. This created such outrage, that it was a major con-

tributor for the federal government to found the employment protection agency

whose role is to monitor air and water pollution and which has regular authority

to impose production standards on regulated industries. The result was a marked

improvement in water and air quality with the Cuhayoga being much less polluted

today than during the 1960s.

Figure 5: Pollution intensity

Source: Brock and Taylor (2010)

The second fact that the they highlight is that irrespective of the pollutant,

the pollution intensity, that is the pollution per unit of output produced is falling

over time, as Figure 5 shows. Note, the pollution intensity is falling at a close

to constant rate over time. A falling pollution intensity over time may suggest

that the environment is a luxury good, i.e., as we become richer, we are willing
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to give up more resources to protect the environment. Figure 6 shows that this is

inconsistent with the data on abatement costs. Despite rising income, the share of

income spend on abatement is close to constant, around 1.7%, over time, which is

the third data fact from Brock and Taylor (2010). If the environment was a luxury

good, we would expect its expenditure share to increase as income grows. How is

it possible that the pollution intensity is falling despite the expenditure share of

abatement being constant? A natural interpretation is that there is technological

progress leading to less pollution per unit of production over time. Moreover, the

data suggests that the improvement occurs at a constant rate.

Figure 6: Abatement costs

Source: Brock and Taylor (2010)

1.2.2 Model setup

The model we use to rationalize these facts is based on the Solow model without

education. We add to this model that production produces pollution and that

we can pay resources to reduce this pollution. Moreover, as seen in the data, the

amount of pollution per unit of production is decreasing over time. To be specific,

output is produced according to

Y (t) = K(t)α (A(t)L(t))1−α , (26)
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with our familiar laws of motions:

L̇(t)

L(t)
= n (27)

Ȧ(t)

A(t)
= g. (28)

Turning to the new part of the model, the pollution, we assume that each unit

of output Y creates Ω units of pollution. However, part of the pollution can be

reduced by abatement such that emitted pollution is:

E(t) = Y (t)Ω(t)− Ω(t)B(t), (29)

where B(t) is the abatement technology. The amount of abatement depends on

the amount of pollution Ω(t)Y (t) and the effort we put into abatement, θY (t).

As shown above, a constant fraction of output that is spent on abatement is a

good approximation. We assume that we can write the abatement function as a

constant returns to scale function depending on total output and the effort we put

into abatement, θY (t):

B(t) = B(Y (t), θY (t)). (30)

Hence, the amount of emissions is given by

E(t) = Y (t)Ω(t)− Ω(t)B(Y (t), θY (t)). (31)

As B has constant returns to scale, we can write emissions and the emission

intensity, respectively as:

E(t) = Y (t)Ω(t) [1−B(1, θ)] (32)

E(t)

Y (t)
= Ω(t) [1−B(1, θ)] . (33)

Recall, in the data, E(t)
Y (t)

is decreasing at a constant rate, and θ is constant. Hence,
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to match the data, we need Ω(t) to grow at a constant negative rate:

Ω(t) = Ω(0) exp(−gBt). (34)

Put differently, the amount of emissions resulting from a unit of output is de-

creasing over time. You may think of this as technological progress, e.g., solar

energy becoming cheaper and, hence, the economy switches to more solar energy

production over time.

The only equationwe are still missing are the dynamics of capital accumulation.

This equation is almost the same as in the Solow model but we have to take into

account that we use part of production, θ, for abatement. Hence, the amount of

output left for consumption and investment is:

I(t) + C(t) = (1− θ)Y (t). (35)

As a result, we obtain a slightly modified law of motion for capital:

K̇(t) = (1− θ)sK(t)α (A(t)L(t))1−α − δK(t). (36)

1.2.3 The steady state

To find a steady state, we proceed as always. First, we derive the capital-to-output

ratio from the production function:

z(t) =
K(t)

Y (t)
=

K(t)

K(t)α (A(t)L(t))1−α (37)

=

(
K(t)

A(t)L(t)

)1−α

. (38)
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Next, we find the growth rate of the capital stock in steady state assuming that

the capital-to-output ratio is constant:

ż(t)

z(t)
= (1− α)

K̇(t)

K(t)
− (1− α) (n+ g) (39)(

K̇(t)

K(t)

)∗

= n+ g (40)

Next, we obtain the second steady state condition from the capital accumulation

equation:

K̇(t) = s(1− θ)K(t)α (A(t)L(t))1−α − δK(t) (41)

K̇(t)

K(t)
=

s(1− θ)

z(t)
− δ, (42)

and finally we put the two together to solve for the steady state capital-to-output

ratio:

z∗ =

(
K(t)

Y (t)

)∗

=
s(1− θ)

n+ g + δ
. (43)

Now we can use the production function and the fact that consumption per worker

is c(t) = (1− s)(1− θ)y(t) to solve for output and consumption per worker in the

steady state:

y(t)∗ =

(
s(1− θ)

n+ g + δ

) α
1−α

A(t) (44)

c(t)∗ = (1− s)(1− θ)

(
s(1− θ)

n+ g + δ

) α
1−α

A(t). (45)

The equations highlight two economic costs of abatement effort. First, a higher

abatement effort reduces consumption per worker because abatement itself is costly

leaving less output that is available for consumption. Second, for the same reason,

also investment is lower and, hence, the steady state capital-to-output ratio is

lower which reduces the steady state output per worker and, hence, steady state

consumption per worker.
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We are now ready to think about pollution growth in steady state. As E(t) =

Y (t)Ω(t) [1−B(1, θ)], the growth rate of emissions, gE, is determined by the sum

of the growth rate of output and the growth rate of emissions created by output,

Ω(t). By assumption the latter is equal to a constant −gB. Hence, we only need

the steady state growth rate of output, which is the same as in the Solow model:

Y (t) =

(
K(t)

Y (t)

) α
1−α

A(t)L(t) (46)

⇒

(
Ẏ (t)

Y (t)

)∗

= n+ g. (47)

Hence, we have in steady state

g∗E =

(
Ė(t)

E(t)

)∗

= n+ g − gB. (48)

Whether total emissions fall in steady state depends on the race between output

growth and the growth rate of emissions per output. As we have seen, the U.S.

data suggests that in steady state, total emissions fall, i.e., gB > n+ g.

1.2.4 Transition dynamics and the Kuznets curve

The steady state result can explain why developed economies have falling emission

levels. The model explains the rising emission levels at lower levels of development

through transition dynamics. To derive the growth rate of emissions outside the

steady state, we need to find the growth rate of output outside the steady state

Y (t) =

(
K(t)

Y (t)

) α
1−α

A(t)L(t) (49)

Ẏ (t)

Y (t)
=

α

1− α

ż(t)

z(t)
+ g + n. (50)
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Substituting this into the growth rate of emissions, we can write this growth rate

as

Ė(t)

E(t)
= g∗E +

α

1− α

ż(t)

z(t)
. (51)

The intuition is simple: When the capital-to-output ratio grows, output grows

and, thus, emissions grow faster than in steady state. Hence, countries that are

far below their steady state will experience a rapid rise in the capital-to-labor ratio

and, thus, a rapid output growth and a high growth rate of emissions. As countries

converge to their steady state, output growth slows down and so does emissions

growth.

Figure 7: Pollution dynamics

Figure 7 shows this idea graphically. At the steady state capital-to-output

ratio z∗, we have that α s(1−θ)
z(t)

= α(δ + n + g), and Ė(t)
E(t)

= g∗E. To the right of z∗,

the growth rate of output is below n + g and, hence, Ė(t)
E(t)

< g∗E. To the left of z∗,

output growth and, hence, emission growth increase. There exists some ẑ where

emission growth is zero, i.e., when the additional output growth coming from a

rising capital-to-output growth is equal to the steady state (negative) growth rate

in emissions: α
1−α

ż(t)
z(t)

= −g∗E To compute that point, we rewrite the dynamics of

the capital-to-output ratio:

ż(t)

z(t)
= (1− α)

K̇(t)

K(t)
− (1− α) (n+ g) (52)

α

1− α

ż(t)

z(t)
= α

K̇(t)

K(t)
− α (n+ g) , (53)
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and substitute α K̇(t)
K(t)

= α
(

s(1−θ)
z(t)

− δ
)
to obtain

α

1− α

ż(t)

z(t)
= α

s(1− θ)

z(t)
− α (n+ g + δ) . (54)

Hence, at ẑ, α s(1−θ)
z(t)

− α (n+ g + δ) = −g∗E. To any point left of ẑ, output growth

is so fast that emissions growth becomes positive, e.g., the cases of South Korea

and China.

As in the standard Solow model, we can find again a solution for the growth

rate of the capital-to-output ratio. Following the exact same steps, we obtain

z(t) =
s(1− θ)

n+ g + δ
+

[
z(0)− s(1− θ)

n+ g + δ

]
exp(−βt) (55)

β = (1− α)(n+ g + δ). (56)

Given this solution, consider the transition dynamic for a country that is currently

in its steady state and increases its abatement effort. The steady state capital-to-

output ratio, z∗ = s(1−θ)
n+g+δ

, will fall such that z(0) > z∗. As a result, the capital-to-

output ratio will fall over time leading to falling output and a temporarily more

negative growth rate in emissions. We know that the growth rate of the capital-

to-output ratio is particularly negative early in the transition leading to the most

negative growth rate in emissions right after the reform and the growth rate of

emissions converging monotonically back to −g∗E.

1.3 CO2 emissions and economic damage

Thus far, we have studied the link from production to pollution. Since the 2000s,

economists have become particularly concerned with CO2 pollution. One inter-

esting aspect of CO2 pollution is that rising pollution levels may affect negatively

output levels. The idea is that CO2 emissions raise global temperatures leading to

more droughts and, thus, less production, more floods and, thus, more economic

damages, and more heat-waves and, thus, more deaths. Some people object to this

arguing that for each drought in Africa, farm land in Siberia becomes available, for

each flooding, the opening passage through the Arctic will reduce shipping costs,
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and each person of dying is outweigh by fewer people dying of freezing. Economists

try to net all those things out to compute the true costs of climate change but

there are large uncertainty bounds around, both, by how much CO2 emissions

raise temperatures and around how much rising temperatures result in economic

damages. What is clear is that the costs of climate change will depend a lot on

how good we are in reallocating production to regions that benefit. We will not

enter into the discussion on the true economic costs of climate change here but

rather take it as given that CO2 emissions cause economic damage and highlight

some qualitative trade-offs that arise from emitting CO2.

1.3.1 A model with pollution damages

We assume again that output is produced according to a Cobb-Douglas production

function. Importantly, emissions, E(t), increase output:

Y (t) =
E(t)γ

exp(θD(t))
K(t)α (A(t)L(t))1−α−γ . (57)

You can think of two ways that emissions increase output. First, emission inten-

sive production processes, such as fossil energy sources, are cheaper and easier

to manage than renewables. Second, and in line with the last section, you can

think of emissions allowing us to save on abatement costs. Important, emissions

now create economic damage, D(t) which reduces productivity by 1
exp(θD(t))

. The

reduction of productivity is the net effect that CO2 emissions have on economic

output discussed above. New emissions increase the environmental damages, while

damages depreciate at a constant rate δD:

Ḋ(t) = E(t)− δDD(t). (58)

You can think of δD as the natural depreciation of emissions in the air through plant

absorption. However, δD may be also man made through technologies like carbon

capturing. Consistent with the U.S. data on emissions, I will assume emissions are
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declining over time at a constant rate:

Ė(t)

E(t)
= −gE. (59)

Finally, the laws of motion for the population, technology, and capital are:

L̇(t)

L(t)
= n, (60)

Ȧ(t)

A(t)
= g, (61)

K̇(t) = sY (t)− δK(t). (62)

1.3.2 Trade-offs in the model

Analyzing the steady state of the model, given that we assume emissions are

declining over time, is not particularly interesting. With Ė(t)
E(t)

= −gE, we have

E(t) 7→ 0 and, hence, D(t) 7→ 0, and the model is the same as the one with a

non-renewable resource which use rate declines at a constant rate. Instead, the

economic interesting aspect of the model is the behavior as we converge to this

steady state. Unfortunately, solving this convergence path explicitly is difficult,

and we will rely instead on numerical simulations. Note, the effect of emissions on

output over time is given by
E(t)γ

exp(θD(t))
. (63)

Figure 8: The effect of emissions over time
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The left panel of Figure 8 displays this productivity effect. A high initial

emission level increases productivity during early years, however, as damage ac-

cumulates faster, at some point, productivity is higher in the economy that starts

with the lower emission level. The right panel displays the resulting output of the

two economies. The economy with the initial high level of emissions has a higher

output initially but a lower output in the long run. This trade-off between output

today vs. the future directly leads to the political discussion on whether, and by

how much, we should reduce emissions today. The above discussion makes clear

that the answer depends on the question how much we value resources (consump-

tion) today relative to the future. The most prominent economic climate change

models suggest that we have to have low discount rates to justify the costs of

emission reduction. To see why, note that the costs of emissions today really show

up in 50 to 100 years time. With a standard time discount rate of 4%, we have

0.96100 < 0.02, i.e., a consumption reduction in 100 years is valued at 2% of a

consumption reduction today. Ultimately, the question of how we should discount

the future is a political question that economists don’t have particular expertise in.

One can make a good moral argument that we ought to value future generations

just as much as current generation, i,e., do not apply any discount and maximize

well-being in the long run. However, economists can contribute to the debate and

point out that with these social preferences, the current generation also ought to

increase the savings rate to bring the economy in line with the Golden rule which

also relies on a zero time discounting assumption.

1.3.3 Are we back to zero growth?

The problem of overusing a factor sounds very familiar to models of fixed (finite)

factors. Yet, we have overcome the Malthus poverty trap and the scarcity of other

finite factors of production. Should we expect the same with pollution? In the

abstract, we can again overcome the scarcity problem by using green energies or

abatement. Just as in the Solow model, this is something we can invest in (no

longer a fixed factor) and theoretically in infinite supply (the sun). What makes

the problem more difficult are missing property rights. With other non-renewable

resources, prices rise when the resource experiences shortage. With pollution, we
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have a tragedy of the common. It is fair to say that the tragedy of the common also

applies to water and air pollution that we studied above. What makes the problem

more difficult is that those types of pollutions could be solved at a national level,

e.g., by founding the federal EPA. The problem of CO2 emissions is a global prob-

lem with no global government that could impose laws and regulations. In fact,

over the last decades, we have seen that any attempts to reach an international

consensus on CO2 emissions has been elusive. One may speculate that, without

such a consensus, emission growth may be positive, instead, as assumed above,

negative. Figure 9 displays the effects on output over time when emission growth

is growing. In the choosen simulation, the damage function grows fast enough

such that output is falling over time. Reflecting these worries, the Nobel price

winning economist Nordhaus warns in Nordhaus et al. (1992) to translate lessons

from other non-renewables one-to-one to the case of green-house gases:

“Economists have often belied their tradition as the dismal science by downplaying

both earlier concerns about the limitations from exhaustible resources and the cur-

rent alarm about potential environmental catastrophe. However, to dismiss today’s

ecological concerns out of hand would be reckless. Because boys have mistakenly

cried wolf in the past does not mean that the woods are safe.”

Figure 9: Output with positive emission growth
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